Arithmetical theory of monoid homomorphisms.
A long-standing conjecture of Podewski states that every minimal field is algebraically closed. Known in positive characteristic, it remains wide open in characteristic zero. We reduce Podewski's conjecture to the (partially) ordered case, and we conjecture that such fields do not exist. We prove the conjecture in case the incomparability relation is transitive (the almost linear case). We also study minimal groups with a (partial) order, and give a complete classification of...
This is a survey of some consequences of the fact that the fundamental group of the orbifold with singular set the Borromean link and isotropy cyclic of order 4 is a universal kleinian group.
Using the notion of relative presentation due to Bogley and Pride, we give a new proof of a theorem of Prishchepov on the asphericity of certain symmetric presentations of groups. Then we obtain further results and applications to topology of low-dimensional manifolds.
This project was partially supported by RFBR, grants 99-01-00233, 98-01-01020 and 00-15-96128.We study the asymptotic behaviour of numerical characteristics of polynomial identities of Lie algebras over a field of characteristic 0. In particular we investigate the colength for the cocharacters of polynilpotent varieties of Lie algebras. We prove that there exist polynilpotent Lie varieties with exponential and overexponential colength growth. We give the exact asymptotics for the colength of a product...
We extend Gromov's notion of asymptotic dimension of finitely generated groups to all discrete groups. In particular, we extend the Hurewicz type theorem proven in [B-D2] to general groups. Then we use this extension to prove a formula for the asymptotic dimension of finitely generated solvable groups in terms of their Hirsch length.