The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This work presents an approach towards the representation theory of the braid groups . We focus on finite-dimensional representations over the field of Laurent series which can be obtained from representations of infinitesimal braids, with the help of Drinfeld associators. We set a dictionary between representation-theoretic properties of these two structures, and tools to describe the representations thus obtained. We give an explanation for the frequent apparition of unitary structures on classical...
Nous définissons et entamons l’étude d’analogues infinitésimaux des quotients principaux
(algèbres de Temperley-Lieb, Hecke, Birman-Wenzl-Murakami) de l’algèbre de groupe du
groupe d’Artin . Ce sont des algèbres de Hopf qui correspondent à des groupes
réductifs, et permettent de donner un cadre général aux représentations dérivées des
représentations classiques de . Nous décomposons complètement l’algèbre de
Temperley-Lieb infinitésimale, et en déduisons plusieurs résultats d’irréductibilité.
Let be a prime number. This paper introduces the Roquette category of finite -groups, which is an additive tensor category containing all finite -groups among its objects. In , every finite -group admits a canonical direct summand , called the edge of . Moreover splits uniquely as a direct sum of edges of Roquette -groups, and the tensor structure of can be described in terms of such edges. The main motivation for considering this category is that the additive functors from to...
Currently displaying 21 –
40 of
48