The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 341 – 360 of 995

Showing per page

Infinite dimensional linear groups with many G - invariant subspaces

Leonid Kurdachenko, Alexey Sadovnichenko, Igor Subbotin (2010)

Open Mathematics

Let F be a field, A be a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dim F(B/Core G(B)) is finite. In the current article, we study linear groups G such that every subspace of A is either nearly G-invariant or almost G-invariant in the case when G is a soluble p-group where p = char F.

Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes

Patie Pierre (2009)

Annales de l'I.H.P. Probabilités et statistiques

We first characterize the increasing eigenfunctions associated to the following family of integro-differential operators, for any α, x>0, γ≥0 and fa smooth function on + , 𝐋 ( γ ) f ( x ) = x - α ( σ 2 x 2 f ' ' ( x ) + ( σ γ + b ) x f ' ( x ) + 0 f e - r x - f ( x ) e - r γ + x f ' ( x ) r 𝕀 { r 1 } ν ( d r ) ) , ( 0 . 1 ) where the coefficients b ,σ≥0 and the measure ν, which satisfies the integrability condition ∫0∞(1∧r2)ν(dr)<+∞, are uniquely determined by the distribution of a spectrally negative, infinitely divisible random variable, with characteristic exponent ψ. L(γ) is known to be the infinitesimal generator of a positive...

Currently displaying 341 – 360 of 995