The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 20 of 20

Showing per page

Factoring an odd abelian group by lacunary cyclic subsets

Sándor Szabó (2010)

Discussiones Mathematicae - General Algebra and Applications

It is a known result that if a finite abelian group of odd order is a direct product of lacunary cyclic subsets, then at least one of the factors must be a subgroup. The paper gives an elementary proof that does not rely on characters.

Finite Groups as the Union of Proper Subgroups

Zhang, Jiping (2006)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 20D60,20E15.As is known, if a finite solvable group G is an n-sum group then n − 1 is a prime power. It is an interesting problem in group theory to study for which numbers n with n-1 > 1 and not a prime power there exists a finite n-sum group. In this paper we mainly study finite nonsolvable n-sum groups and show that 15 is the first such number. More precisely, we prove that there exist no finite 11-sum or 13-sum groups and there is indeed a finite 15-sum...

Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements

Changguo Shao, Qinhui Jiang (2014)

Czechoslovak Mathematical Journal

Counting subgroups of finite groups is one of the most important topics in finite group theory. We classify the finite non-nilpotent groups G whose set of numbers of subgroups of possible orders n ( G ) has exactly two elements. We show that if G is a non-nilpotent group whose set of numbers of subgroups of possible orders has exactly 2 elements, then G has a normal Sylow subgroup of prime order and G is solvable. Moreover, as an application we give a detailed description of non-nilpotent groups with...

Finite groups with eight non-linear irreducible characters

Yakov Berkovich (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This Note contains the complete list of finite groups, having exactly eight non-linear irreducible characters. In section 4 we consider in full details some typical cases.

Finite groups with prime graphs of diameter 5

Ilya B. Gorshkov, Andrey V. Kukharev (2020)

Communications in Mathematics

In this paper we consider a prime graph of finite groups. In particular, we expect finite groups with prime graphs of maximal diameter.

Currently displaying 1 – 20 of 20

Page 1