The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

Rational fixed points for linear group actions

Pietro Corvaja (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove a version of the Hilbert Irreducibility Theorem for linear algebraic groups. Given a connected linear algebraic group G , an affine variety V and a finite map π : V G , all defined over a finitely generated field κ of characteristic zero, Theorem 1.6 provides the natural necessary and sufficient condition under which the set π ( V ( κ ) ) contains a Zariski dense sub-semigroup Γ G ( κ ) ; namely, there must exist an unramified covering p : G ˜ G and a map θ : G ˜ V such that π θ = p . In the case κ = , G = 𝔾 a is the additive group, we reobtain the...

Currently displaying 1 – 6 of 6

Page 1