Square-integrability of tensor products.
Dans cet article nous démontrons un théorème de stabilité des probabilités de retour sur un groupe localement compact unimodulaire, séparable et compactement engendré. Nous démontrons que le comportement asymptotique de F*(2n)(e) ne dépend pas de la densité F sous des hypothèses naturelles. A titre d’exemple nous établissons que la probabilité de retour sur une large classe de groupes résolubles se comporte comme exp(−n1/3).
Building on earlier work of Katětov, Uspenskij proved in [8] that the group of isometries of Urysohn's universal metric space 𝕌, endowed with the pointwise convergence topology, is a universal Polish group (i.e. it contains an isomorphic copy of any Polish group). Answering a question of Gao and Kechris, we prove here the following, more precise result: for any Polish group G, there exists a closed subset F of 𝕌 such that G is topologically isomorphic to the group of isometries of 𝕌 which map...
Let (G,X) be a transformation group, where X is a locally compact Hausdorff space and G is a compact group. We investigate the stable rank and the real rank of the transformation group C*-algebra C₀(X)⋊ G. Explicit formulae are given in the case where X and G are second countable and X is locally of finite G-orbit type. As a consequence, we calculate the ranks of the group C*-algebra C*(ℝⁿ ⋊ G), where G is a connected closed subgroup of SO(n) acting on ℝⁿ by rotation.
Let be a Hermitian symmetric space of the noncompact type and let be a discrete series representation of holomorphically induced from a unitary character of . Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple by a suitable modification of the Berezin calculus on . We extend the corresponding Berezin transform to a class of functions on which contains the Berezin symbol of for in the Lie algebra of . This allows...