Previous Page 22

Displaying 421 – 434 of 434

Showing per page

Automorphism groups of right-angled buildings: simplicity and local splittings

Pierre-Emmanuel Caprace (2014)

Fundamenta Mathematicae

We show that the group of type-preserving automorphisms of any irreducible semiregular thick right-angled building is abstractly simple. When the building is locally finite, this gives a large family of compactly generated abstractly simple locally compact groups. Specialising to appropriate cases, we obtain examples of such simple groups that are locally indecomposable, but have locally normal subgroups decomposing non-trivially as direct products, all of whose factors are locally normal.

Automorphismes analytiques d'un domaine de Reinhardt borné d'un espace de Banach à base

Jean-Pierre Vigué (1984)

Annales de l'institut Fourier

Dans cet article, j’étudie le groupe des automorphismes analytiques d’un domaine de Reinhardt borné d’un espace de Banach complexe à base. Je montre que, dans certains cas, ce groupe est un groupe de Lie banachique réel et je donne une classification complète des domaines de Reinhardt bornés homogènes. Pour certains espaces de Banach, je montre que les seuls automorphismes analytiques de la boule-unité ouverte sont linéaires.

Averages of unitary representations and weak mixing of random walks

Michael Lin, Rainer Wittmann (1995)

Studia Mathematica

Let S be a locally compact (σ-compact) group or semigroup, and let T(t) be a continuous representation of S by contractions in a Banach space X. For a regular probability μ on S, we study the convergence of the powers of the μ-average Ux = ʃ T(t)xdμ(t). Our main results for random walks on a group G are: (i) The following are equivalent for an adapted regular probability on G: μ is strictly aperiodic; U n converges weakly for every continuous unitary representation of G; U is weakly mixing for any...

Currently displaying 421 – 434 of 434

Previous Page 22