The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 355

Showing per page

The combinatorial derivation and its inverse mapping

Igor Protasov (2013)

Open Mathematics

Let G be a group and P G be the Boolean algebra of all subsets of G. A mapping Δ: P G → P G defined by Δ(A) = {g ∈ G: gA ∩ A is infinite} is called the combinatorial derivation. The mapping Δ can be considered as an analogue of the topological derivation d: P X→ P X, A ↦ A d, where X is a topological space and A d is the set of all limit points of A. We study the behaviour of subsets of G under action of Δ and its inverse mapping ∇. For example, we show that if G is infinite and I is an ideal in...

The concept of boundedness and the Bohr compactification of a MAP Abelian group

Jorge Galindo, Salvador Hernández (1999)

Fundamenta Mathematicae

Let G be a maximally almost periodic (MAP) Abelian group and let ℬ be a boundedness on G in the sense of Vilenkin. We study the relations between ℬ and the Bohr topology of G for some well known groups with boundedness (G,ℬ). As an application, we prove that the Bohr topology of a topological group which is topologically isomorphic to the direct product of a locally convex space and an -group, contains “many” discrete C-embedded subsets which are C*-embedded in their Bohr compactification. This...

The Connes-Kasparov conjecture for almost connected groups and for linear p -adic groups

Jérôme Chabert, Siegfried Echterhoff, Ryszard Nest (2003)

Publications Mathématiques de l'IHÉS

Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C*-algebra of G is an isomorphism. The same is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.

The diffeomorphism group of a Lie foliation

Gilbert Hector, Enrique Macías-Virgós, Antonio Sotelo-Armesto (2011)

Annales de l’institut Fourier

We describe explicitly the group of transverse diffeomorphisms of several types of minimal linear foliations on the torus T n , n 2 . We show in particular that non-quadratic foliations are rigid, in the sense that their only transverse diffeomorphisms are ± Id and translations. The description derives from a general formula valid for the group of transverse diffeomorphisms of any minimal Lie foliation on a compact manifold. Our results generalize those of P. Donato and P. Iglesias for T 2 , P. Iglesias and...

Currently displaying 41 – 60 of 355