Equicontinuity, uniform structures and countability in locally compact groups.
In this paper we give a complete isomorphical classification of free topological groups of locally compact zero-dimensional separable metric spaces . From this classification we obtain for locally compact zero-dimensional separable metric spaces and that the free topological groups and are isomorphic if and only if and are linearly homeomorphic.
An important consequence of a result of Katětov and Morita states that every metrizable space is contained in a complete metrizable space of the same dimension. We give an equivariant version of this fact in the case of a locally compact -compact acting group.
Let be a (generalized) flag manifold of a complex semisimple Lie group . We investigate the problem of constructing a graded star product on which corresponds to a -equivariant quantization of symbols into twisted differential operators acting on half-forms on . We construct, when is generated by the momentum functions for , a preferred choice of where has the form . Here are operators on . In the known examples, () is not a differential operator, and so the star product ...
On montre que les produits de Riesz sur le tore sont des mesures ergodiques sous une condition de lacunarité pour les fréquences, indépendamment de toute propriété arithmétique, et que cette condition est la meilleure possible de ce point de vue. On établit un critère analogue pour la propriété de pureté discutés précédemment par B. Host et l’auteur, ce qui fournit l’exemple d’une mesure pure étrangère à toutes ses translatées et en particulier non ergodique.
Nous corrigeons deux erreurs de [Rodier 1988] : l’une dans l’étude d’une involution sur les représentations irréductibles non ramifiées d’un groupe semi-simple, l’autre dans la description de représentations du groupe .