The use of conjugate convex functions in complex analysis
The classical Vitali convergence theorem gives necessary and sufficient conditions for norm convergence in the space of Lebesgue integrable functions. Although there are versions of the Vitali convergence theorem for the vector valued McShane and Pettis integrals given by Fremlin and Mendoza, these results do not involve norm convergence in the respective spaces. There is a version of the Vitali convergence theorem for scalar valued functions defined on compact intervals in given by Kurzweil and...
We present a weaker version of the Fremlin generalized McShane integral (1995) for functions defined on a -finite outer regular quasi Radon measure space into a Banach space and study its relation with the Pettis integral. In accordance with this new method of integration, the resulting integral can be expressed as a limit of McShane sums with respect to the weak topology. It is shown that a function from into is weakly McShane integrable on each measurable subset of if and only if...
If φ: [0,∞) → [0,∞) is a convex function with φ(0) = 0 and conjugate function φ*, the inequality is shown to hold true for every ε ∈ (0,∞) if and only if φ* satisfies the Δ₂-condition.
Let Ω,F,G be a partition of such that Ω is open, F is and of the first category, and G is . We prove that, for every γ ∈ ]1,∞[, there is an element of the Gevrey class Γγ which is analytic on Ω, has F as its set of defect points and has G as its set of divergence points.
Mathematics Subject Classification 2010: 26A33, 33E12.The new result presented here is a theorem involving series in the three-parameter Mittag-Leffler function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional differential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Leffler function.
We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for the vibration...
In the first part of this paper we establish the theory of rapid variation on time scales, which corresponds to existing theory from continuous and discrete cases. We introduce two definitions of rapid variation on time scales. We will study their properties and then show the relation between them. In the second part of this paper, we establish necessary and sufficient conditions for all positive solutions of the second order half-linear dynamic equations on time scales to be rapidly varying. Note...
A theorem due to G. D. Birkhoff states that every essential curve which is invariant under a symplectic twist map of the annulus is the graph of a Lipschitz map. We prove: if the graph of a Lipschitz map h:T→R is invariant under a symplectic twist map, then h is a little bit more regular than simply Lipschitz (Theorem 1); we deduce that there exists a Lipschitz map h:T→R whose graph is invariant under no symplectic twist map (Corollary 2).Assuming that the dynamic of a twist map restricted to a...