The sharp Sobolev inequality in quantitative form
Let Ω be an open connected subset of . We show that the space A(Ω) of real-analytic functions on Ω has no (Schauder) basis. One of the crucial steps is to show that all metrizable complemented subspaces of A(Ω) are finite-dimensional.
We determine the Hölder regularity of Riemann's function at each point; we deduce from this analysis its spectrum of singularities, thus showing its multifractal nature.
In this paper, we study the s-Perron, sap-Perron and ap-McShane integrals. In particular, we show that the s-Perron integral is equivalent to the McShane integral and that the sap-Perron integral is equivalent to the ap-McShane integral.
A sufficient condition for the asymptotic stability of Markov operators acting on measures defined on Polish spaces is presented.
In this article complete characterizations of the quasiasymptotic behavior of Schwartz distributions are presented by means of structural theorems. The cases at infinity and the origin are both analyzed. Special attention is paid to quasiasymptotics of degree -1. It is shown how the structural theorem can be used to study Cesàro and Abel summability of trigonometric series and integrals. Further properties of quasiasymptotics at infinity are discussed. A condition for test functions in bigger spaces...
We show a general method of construction of non--porous sets in complete metric spaces. This method enables us to answer several open questions. We prove that each non--porous Suslin subset of a topologically complete metric space contains a non--porous closed subset. We show also a sufficient condition, which gives that a certain system of compact sets contains a non--porous element. Namely, if we denote the space of all compact subsets of a compact metric space with the Vietoris topology...
We prove that every infinite nowhere dense compact subset of the interval is an -limit set of homoclinic type for a continuous function from to .
Si prova che ogni polinomio in una variabile reale di grado è somma di funzioni periodiche, ovviamente non tutte continue, e che ci sono funzioni di una variabile reale che non sono somma di un numero finito di funzioni periodiche.
Suppose is a nonnegative, locally integrable, radial function on , which is nonincreasing in . Set when and . Given and , we show there exists so that for all , if and only if exists with for all dyadic cubes Q, where . This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.