On generalized variations (II)
Mathematics Subject Classification: 33D60, 33D90, 26A33Fractional q-integral operators of generalized Weyl type, involving generalized basic hypergeometric functions and a basic analogue of Fox’s H-function have been investigated. A number of integrals involving various q-functions have been evaluated as applications of the main results.
We prove the o-minimal generalization of the Łojasiewicz inequality , with , in a neighborhood of , where is real analytic at and . We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.
Perceptions about function changes are represented by rules like “If X is SMALL then Y is QUICKLY INCREASING.” The consequent part of a rule describes a granule of directions of the function change when X is increasing on the fuzzy interval given in the antecedent part of the rule. Each rule defines a granular differential and a rule base defines a granular derivative. A reconstruction of a fuzzy function given by the granular derivative and the initial value given by the rule is similar to Euler’s...
Some -analysis variants of Hardy type inequalities of the form with sharp constant are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.