The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 38

Showing per page

On a problem of Mazur from "The Scottish Book" concerning second partial derivatives

Volodymyr Mykhaylyuk, Anatolij Plichko (2015)

Colloquium Mathematicae

We comment on a problem of Mazur from “The Scottish Book" concerning second partial derivatives. We prove that if a function f(x,y) of real variables defined on a rectangle has continuous derivative with respect to y and for almost all y the function F y ( x ) : = f y ' ( x , y ) has finite variation, then almost everywhere on the rectangle the partial derivative f y x ' ' exists. We construct a separately twice differentiable function whose partial derivative f x ' is discontinuous with respect to the second variable on a set of positive...

On sets of discontinuities of functions continuous on all lines

Luděk Zajíček (2022)

Commentationes Mathematicae Universitatis Carolinae

Answering a question asked by K. C. Ciesielski and T. Glatzer in 2013, we construct a C 1 -smooth function f on [ 0 , 1 ] and a closed set M graph f nowhere dense in graph f such that there does not exist any linearly continuous function on 2 (i.e., function continuous on all lines) which is discontinuous at each point of M . We substantially use a recent full characterization of sets of discontinuity points of linearly continuous functions on n proved by T. Banakh and O. Maslyuchenko in 2020. As an easy consequence of our...

Currently displaying 1 – 20 of 38

Page 1 Next