Displaying 261 – 280 of 290

Showing per page

Trivial Cases for the Kantorovitch Problem

Serge Dubuc, Issa Kagabo, Patrice Marcotte (2010)

RAIRO - Operations Research

Let X and Y be two compact spaces endowed with respective measures μ and ν satisfying the condition µ(X) = v(Y). Let c be a continuous function on the product space X x Y. The mass transfer problem consists in determining a measure ξ on X x Y whose marginals coincide with μ and ν, and such that the total cost ∫ ∫ c(x,y)dξ(x,y) be minimized. We first show that if the cost function c is decomposable, i.e., can be represented as the sum of two continuous functions defined on X and Y, respectively,...

Two dimensional probabilities with a given conditional structure

Josef Štěpán, Daniel Hlubinka (1999)

Kybernetika

A properly measurable set 𝒫 X × M 1 ( Y ) (where X , Y are Polish spaces and M 1 ( Y ) is the space of Borel probability measures on Y ) is considered. Given a probability distribution λ M 1 ( X ) the paper treats the problem of the existence of X × Y -valued random vector ( ξ , η ) for which ( ξ ) = λ and ( η | ξ = x ) 𝒫 x λ -almost surely that possesses moreover some other properties such as “ ( ξ , η ) has the maximal possible support” or “ ( η | ξ = x ) ’s are extremal...

Two extension theorems. Modular functions on complemented lattices

Hans Weber (2002)

Czechoslovak Mathematical Journal

We prove an extension theorem for modular functions on arbitrary lattices and an extension theorem for measures on orthomodular lattices. The first is used to obtain a representation of modular vector-valued functions defined on complemented lattices by measures on Boolean algebras. With the aid of this representation theorem we transfer control measure theorems, Vitali-Hahn-Saks and Nikodým theorems and the Liapunoff theorem about the range of measures to the setting of modular functions on complemented...

Two ideals connected with strong right upper porosity at a point

Viktoriia Bilet, Oleksiy Dovgoshey, Jürgen Prestin (2015)

Czechoslovak Mathematical Journal

Let SP be the set of upper strongly porous at 0 subsets of + and let I ^ ( SP ) be the intersection of maximal ideals I SP . Some characteristic properties of sets E I ^ ( SP ) are obtained. We also find a characteristic property of the intersection of all maximal ideals contained in a given set which is closed under subsets. It is shown that the ideal generated by the so-called completely strongly porous at 0 subsets of + is a proper subideal of I ^ ( SP ) . Earlier, completely strongly porous sets and some of their properties were...

Two point sets with additional properties

Marek Bienias, Szymon Głąb, Robert Rałowski, Szymon Żeberski (2013)

Czechoslovak Mathematical Journal

A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some σ -ideal, being (completely) nonmeasurable with respect to different σ -ideals, being a κ -covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations...

Two problems on doubling measures.

Robert Kaufman, Jang-Mei Wu (1995)

Revista Matemática Iberoamericana

Doubling measures appear in relation to quasiconformal mappings of the unit disk of the complex plane onto itself. Each such map determines a homeomorphism of the unit circle on itself, and the problem arises, which mappings f can occur as boundary mappings?

Two Selection Theorems

John P. Burgess (1977)

Δελτίο της Ελληνικής Μαθηματικής Εταιρίας

Two theorems on the Scorza Dragoni property for multifunctions

Gabriele Bonanno (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We point out two theorems on the Scorza Dragoni property for multifunctions. As an application, in particular, we improve a Carathéodory selection theorem by A. Cellina [4], by removing a compactness assumption.

Currently displaying 261 – 280 of 290