Almost uniform convergence for continuous parameters
The aim of this paper is to survey and discuss, very briefly, some ways how to introduce, within the framework of possibilistic measures, a notion analogous to that of conditional probability measure in probability theory. The adjective “analogous” in the last sentence is to mean that the conditional possibilistic measures should play the role of a mathematical tool to actualize one’s degrees of beliefs expressed by an a priori possibilistic measure, having obtained some further information concerning...
This paper has three parts. First, we study and characterize amenable and extremely amenable topological semigroups in terms of invariant measures using integral logic. We prove definability of some properties of a topological semigroup such as amenability and the fixed point on compacta property. Second, we define types and develop local stability in the framework of integral logic. For a stable formula ϕ, we prove definability of all complete ϕ-types over models and deduce from this the fundamental...
Here we present abstract formulations of two theorems of Solecki which deal with some generalizations of the classical Vitali theorem on nonmeasurable sets in spaces with transformation groups.
Every separable infinite-dimensional superreflexive Banach space admits an equivalent norm which is Fréchet differentiable only on an Aronszajn null set.
Given a measure-preserving transformation T of a probability space (X,ℬ,μ) and a finite measurable partition ℙ of X, we show how to construct an Alpern tower of any height whose base is independent of the partition ℙ. That is, given N ∈ ℕ, there exists a Rokhlin tower of height N, with base B and error set E, such that B is independent of ℙ, and TE ⊂ B.
P. Samek and D. Volný, in the paper ``Uniqueness of a martingale-coboundary decomposition of a stationary processes" (1992), showed the uniqueness of martingale-coboundary decomposition of strictly stationary processes. The original proof is given by reducing the problem to the ergodic case. In this note we give another proof without such reduction.