Displaying 641 – 660 of 3919

Showing per page

Characterization of local dimension functions of subsets of d

L. Olsen (2005)

Colloquium Mathematicae

For a subset E d and x d , the local Hausdorff dimension function of E at x is defined by d i m H , l o c ( x , E ) = l i m r 0 d i m H ( E B ( x , r ) ) where d i m H denotes the Hausdorff dimension. We give a complete characterization of the set of functions that are local Hausdorff dimension functions. In fact, we prove a significantly more general result, namely, we give a complete characterization of those functions that are local dimension functions of an arbitrary regular dimension index.

Characterization of optimal shapes and masses through Monge-Kantorovich equation

Guy Bouchitté, Giuseppe Buttazzo (2001)

Journal of the European Mathematical Society

We study some problems of optimal distribution of masses, and we show that they can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar state functions, we show the equivalence with a mass transport problem, emphasizing its geometrical approach through geodesics. The case of elasticity, where the state function is vector valued, is also considered. In both cases some examples are presented.

Characterization of Strongly Exposed Points in General Köthe-Bochner Banach Spaces

Houcine Benabdellah, My Hachem Lalaoui Rhali (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We study strongly exposed points in general Köthe-Bochner Banach spaces X(E). We first give a characterization of strongly exposed points of the set of X-selections of a measurable multifunction Γ. We then apply this result to the study of strongly exposed points of the closed unit ball of X(E). Precisely we show that if an element f is a strongly exposed point of B X ( E ) , then |f| is a strongly exposed point of B X and f(ω)/∥ f(ω)∥ is a strongly exposed point of B E for μ-almost all ω ∈ S(f).

Characterization of σ-porosity via an infinite game

Martin Doležal (2012)

Fundamenta Mathematicae

Let X be an arbitrary metric space and P be a porosity-like relation on X. We describe an infinite game which gives a characterization of σ-P-porous sets in X. This characterization can be applied to ordinary porosity above all but also to many other variants of porosity.

Characterizations of Kurzweil-Henstock-Pettis integrable functions

L. Di Piazza, K. Musiał (2006)

Studia Mathematica

We prove that several results of Talagrand proved for the Pettis integral also hold for the Kurzweil-Henstock-Pettis integral. In particular the Kurzweil-Henstock-Pettis integrability can be characterized by cores of the functions and by properties of suitable operators defined by integrands.

Checkerboards, Lipschitz functions and uniform rectifiability.

Peter W. Jones, Nets Hawk Katz, Ana Vargas (1997)

Revista Matemática Iberoamericana

In his recent lecture at the International Congress [S], Stephen Semmes stated the following conjecture for which we provide a proof.Theorem. Suppose Ω is a bounded open set in Rn with n > 2, and suppose that B(0,1) ⊂ Ω, Hn-1(∂Ω) = M < ∞ (depending on n and M) and a Lipschitz graph Γ (with constant L) such that Hn-1(Γ ∩ ∂Ω) ≥ ε.Here Hk denotes k-dimensional Hausdorff measure and B(0,1) the unit ball in Rn. By iterating our proof we obtain a slightly stronger result which allows us...

Choquet integrals in potential theory.

David R. Adams (1998)

Publicacions Matemàtiques

This is a survey of various applications of the notion of the Choquet integral to questions in Potential Theory, i.e. the integral of a function with respect to a non-additive set function on subsets of Euclidean n-space, capacity. The Choquet integral is, in a sense, a nonlinear extension of the standard Lebesgue integral with respect to the linear set function, measure. Applications include an integration principle for potentials, inequalities for maximal functions, stability for solutions to...

Choquet simplexes whose set of extreme points is K -analytic

Michel Talagrand (1985)

Annales de l'institut Fourier

We construct a Choquet simplex K whose set of extreme points T is 𝒦 -analytic, but is not a 𝒦 -Borel set. The set T has the surprising property of being a K σ δ set in its Stone-Cech compactification. It is hence an example of a K σ δ set that is not absolute.

Choquet-like integrals with respect to level-dependent capacities and ϕ -ordinal sums of aggregation function

Radko Mesiar, Peter Smrek (2015)

Kybernetika

In this study we merge the concepts of Choquet-like integrals and the Choquet integral with respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent capacities our approach can be represented as a ϕ -ordinal sum of Choquet-like integrals acting on subdomains of the considered scale, and thus it can be regarded as extension method. The approach is illustrated by several examples.

Currently displaying 641 – 660 of 3919