Displaying 981 – 1000 of 3919

Showing per page

Dynamical boundary of a self-similar set

Manuel Morán (1999)

Fundamenta Mathematicae

Given a self-similar set E generated by a finite system Ψ of contracting similitudes of a complete metric space X we analyze a separation condition for Ψ, which is obtained if, in the open set condition, the open subset of X is replaced with an open set in the topology of E as a metric subspace of X. We prove that such a condition, which we call the restricted open set condition, is equivalent to the strong open set condition. Using the dynamical properties of the forward shift, we find a canonical...

Dynamical entropy of a non-commutative version of the phase doubling

Johan Andries, Mieke De Cock (1998)

Banach Center Publications

A quantum dynamical system, mimicking the classical phase doubling map z z 2 on the unit circle, is formulated and its ergodic properties are studied. We prove that the quantum dynamical entropy equals the classical value log2 by using compact perturbations of the identity as operational partitions of unity.

Egoroff, σ, and convergence properties in some archimedean vector lattices

A. W. Hager, J. van Mill (2015)

Studia Mathematica

An archimedean vector lattice A might have the following properties: (1) the sigma property (σ): For each a n c o n A there are λ n ( 0 , ) and a ∈ A with λₙaₙ ≤ a for each n; (2) order convergence and relative uniform convergence are equivalent, denoted (OC ⇒ RUC): if aₙ ↓ 0 then aₙ → 0 r.u. The conjunction of these two is called strongly Egoroff. We consider vector lattices of the form D(X) (all extended real continuous functions on the compact space X) showing that (σ) and (OC ⇒ RUC) are equivalent, and equivalent...

Currently displaying 981 – 1000 of 3919