Displaying 1441 – 1460 of 3919

Showing per page

Inhomogeneous self-similar sets and box dimensions

Jonathan M. Fraser (2012)

Studia Mathematica

We investigate the box dimensions of inhomogeneous self-similar sets. Firstly, we extend some results of Olsen and Snigireva by computing the upper box dimensions assuming some mild separation conditions. Secondly, we investigate the more difficult problem of computing the lower box dimension. We give some non-trivial bounds and provide examples to show that lower box dimension behaves much more strangely than upper box dimension, Hausdorff dimension and packing dimension.

Injections de Sobolev probabilistes et applications

Nicolas Burq, Gilles Lebeau (2013)

Annales scientifiques de l'École Normale Supérieure

On démontre dans cet article des versions probabilistes des injections de Sobolev sur une variété riemannienne compacte, ( M , g ) . Plus précisément on démontre que pour des mesures de probabilité naturelles sur l’espace L 2 ( M ) , presque toute fonction appartient à tous les espaces L p ( M ) , p < + . On donne ensuite des applications à l’étude des harmoniques sphériques sur la sphère 𝕊 d  : on démontre (encore pour des mesures de probabilité naturelles) que presque toute base hilbertienne de L 2 ( 𝕊 d ) formée d’harmoniques sphériques...

Inscribing compact non-σ-porous sets into analytic non-σ-porous sets

Miroslav Zelený, Luděk Zajíček (2005)

Fundamenta Mathematicae

The main aim of this paper is to give a simpler proof of the following assertion. Let A be an analytic non-σ-porous subset of a locally compact metric space, E. Then there exists a compact non-σ-porous subset of A. Moreover, we prove the above assertion also for σ-P-porous sets, where P is a porosity-like relation on E satisfying some additional conditions. Our result covers σ-⟨g⟩-porous sets, σ-porous sets, and σ-symmetrically porous sets.

Inserting measurable functions precisely

Javier Gutiérrez García, Tomasz Kubiak (2014)

Czechoslovak Mathematical Journal

A family of subsets of a set is called a σ -topology if it is closed under arbitrary countable unions and arbitrary finite intersections. A σ -topology is perfect if any its member (open set) is a countable union of complements of open sets. In this paper perfect σ -topologies are characterized in terms of inserting lower and upper measurable functions. This improves upon and extends a similar result concerning perfect topologies. Combining this characterization with a σ -topological version of Katětov-Tong...

Integrable system of the heat kernel associated with logarithmic potentials

Kazuhiko Aomoto (2000)

Annales Polonici Mathematici

The heat kernel of a Sturm-Liouville operator with logarithmic potential can be described by using the Wiener integral associated with a real hyperplane arrangement. The heat kernel satisfies an infinite-dimensional analog of the Gauss-Manin connection (integrable system), generalizing a variational formula of Schläfli for the volume of a simplex in the space of constant curvature.

Integral formulas on projective space and the radon transform of Gindikin-Henkin-Polyakov.

Bo Berndtsson (1988)

Publicacions Matemàtiques

We construct a variant of Koppelman's formula for (0,q)-forms with values in a line bundle, O(l), on projective space. The formula is then applied to a study of a Radon transform for (0,q)-forms, introduced by Gindikin-Henkin-Polyakov. Our presentation follows along the basic lines of Henkin-Polyakov [3], with some simplifications.

Currently displaying 1441 – 1460 of 3919