The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1701 – 1720 of 3925

Showing per page

Maximal distributional chaos of weighted shift operators on Köthe sequence spaces

Xinxing Wu (2014)

Czechoslovak Mathematical Journal

During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator B w n : λ p ( A ) λ p ( A ) defined on the Köthe sequence space λ p ( A ) exhibits distributional ϵ -chaos for any 0 < ϵ < diam λ p ( A ) and any n is obtained. Under this assumption, the principal measure of B w n is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional ϵ -chaos for any 0 < ϵ < diam λ p ( A ) .

Mazur spaces.

Wilansky, Albert (1981)

International Journal of Mathematics and Mathematical Sciences

Mean quadratic convergence of signed random measures

Pierre Jacob, Paulo Eduardo Oliveira (1991)

Commentationes Mathematicae Universitatis Carolinae

We consider signed Radon random measures on a separable, complete and locally compact metric space and study mean quadratic convergence with respect to vague topology on the space of measures. We prove sufficient conditions in order to obtain mean quadratic convergence. These results are based on some identification properties of signed Radon measures on the product space, also proved in this paper.

Measurable cardinals and category bases

Andrzej Szymański (1991)

Commentationes Mathematicae Universitatis Carolinae

We show that the existence of a non-trivial category base on a set of regular cardinality with each subset being Baire is equiconsistent to the existence of a measurable cardinal.

Measurable envelopes, Hausdorff measures and Sierpiński sets

Márton Elekes (2003)

Colloquium Mathematicae

We show that the existence of measurable envelopes of all subsets of ℝⁿ with respect to the d-dimensional Hausdorff measure (0 < d < n) is independent of ZFC. We also investigate the consistency of the existence of d -measurable Sierpiński sets.

Currently displaying 1701 – 1720 of 3925