The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 121 – 140 of 209

Showing per page

On the dimension of p -harmonic measure in space

John L. Lewis, Kaj Nyström, Andrew Vogel (2013)

Journal of the European Mathematical Society

Let Ω n , n 3 , and let p , 1 < p < , p 2 , be given. In this paper we study the dimension of p -harmonic measures that arise from non-negative solutions to the p -Laplace equation, vanishing on a portion of Ω , in the setting of δ -Reifenberg flat domains. We prove, for p n , that there exists δ ˜ = δ ˜ ( p , n ) > 0 small such that if Ω is a δ -Reifenberg flat domain with δ < δ ˜ , then p -harmonic measure is concentrated on a set of σ -finite H n 1 -measure. We prove, for p n , that for sufficiently flat Wolff snowflakes the Hausdorff dimension of p -harmonic measure...

On the Dirichlet problem associated with the Dunkl Laplacian

Mohamed Ben Chrouda (2016)

Annales Polonici Mathematici

This paper deals with the questions of the existence and uniqueness of a solution to the Dirichlet problem associated with the Dunkl Laplacian Δ k as well as the hypoellipticity of Δ k on noninvariant open sets.

On the Dirichlet problem for functions of the first Baire class

Jiří Spurný (2001)

Commentationes Mathematicae Universitatis Carolinae

Let be a simplicial function space on a metric compact space X . Then the Choquet boundary Ch X of is an F σ -set if and only if given any bounded Baire-one function f on Ch X there is an -affine bounded Baire-one function h on X such that h = f on Ch X . This theorem yields an answer to a problem of F. Jellett from [8] in the case of a metrizable set X .

On the equivalence of Green functions for general Schrödinger operators on a half-space

Abdoul Ifra, Lotfi Riahi (2004)

Annales Polonici Mathematici

We consider the general Schrödinger operator L = d i v ( A ( x ) x ) - μ on a half-space in ℝⁿ, n ≥ 3. We prove that the L-Green function G exists and is comparable to the Laplace-Green function G Δ provided that μ is in some class of signed Radon measures. The result extends the one proved on the half-plane in [9] and covers the case of Schrödinger operators with potentials in the Kato class at infinity K considered by Zhao and Pinchover. As an application we study the cone L ( ) of all positive L-solutions continuously vanishing...

On the existence of steady-state solutions to the Navier-Stokes system for large fluxes

Antonio Russo, Giulio Starita (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we deal with the stationary Navier-Stokes problem in a domain Ω with compact Lipschitz boundary Ω and datum a in Lebesgue spaces. We prove existence of a solution for arbitrary values of the fluxes through the connected components of Ω , with possible countable exceptional set, provided a is the sum of the gradient of a harmonic function and a sufficiently small field, with zero total flux for Ω bounded.

On the existence of weighted boundary limits of harmonic functions

Yoshihiro Mizuta (1990)

Annales de l'institut Fourier

We study the existence of tangential boundary limits for harmonic functions in a Lipschitz domain, which belong to Orlicz-Sobolev classes. The exceptional sets appearing in this discussion are evaluated by use of Bessel-type capacities as well as Hausdorff measures.

On the Green type kernels on the half space in n

Masayuki Itô (1978)

Annales de l'institut Fourier

We characterize the Hunt convolution kernels χ on R n ( n 2 ) whose the Green type kernels on D = { ( x 1 , ... , x n ) R n ; x 1 &gt; 0 } , V χ : C K ( D ) f ( χ * f - χ * ...

Currently displaying 121 – 140 of 209