Hyperplane complements of large type.
We prove that the exceptional complex Lie group has a transitive action on the hyperplane section of the complex Cayley plane . Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of . Moreover, we identify the stabilizer of the -action as a parabolic subgroup (with Levi factor ) of the complex Lie group . In the real case we obtain an analogous realization of .
Soit un germe en de 1-forme différentielle holomorphe, satisfaisant la condition d’intégrabilité et non dicritique, i.e. sur toute surface non intégrale de , on ne peut tracer, au voisinage de 0, qu’un nombre fini de germes de courbes analytiques , intégrales de , avec . Alors possède un germe d’hypersurface analytique intégrale.
An explicit representation for ideal CR submanifolds of a complex hyperbolic space has been derived in T. Sasahara (2002). We simplify and reformulate the representation in terms of certain Kähler submanifolds. In addition, we investigate the almost contact metric structure of ideal CR submanifolds in a complex hyperbolic space. Moreover, we obtain a codimension reduction theorem for ideal CR submanifolds in a complex projective space.
In this paper we prove the implicit function theorem for locally blow-analytic functions, and as an interesting application of using blow-analytic homeomorphisms, we describe a very easy way to resolve singularities of analytic curves.