The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2181 – 2200 of 5581

Showing per page

Hyperplane section 𝕆 0 2 of the complex Cayley plane as the homogeneous space F 4 / P 4

Karel Pazourek, Vít Tuček, Peter Franek (2011)

Commentationes Mathematicae Universitatis Carolinae

We prove that the exceptional complex Lie group F 4 has a transitive action on the hyperplane section of the complex Cayley plane 𝕆 2 . Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of Spin ( 9 , ) F 4 . Moreover, we identify the stabilizer of the F 4 -action as a parabolic subgroup P 4 (with Levi factor B 3 T 1 ) of the complex Lie group F 4 . In the real case we obtain an analogous realization of F 4 ( - 20 ) / .

Hypersurfaces intégrales des feuilletages holomorphes

Felipe Cano, Jean-François Mattei (1992)

Annales de l'institut Fourier

Soit ω un germe en 0 C n de 1-forme différentielle holomorphe, satisfaisant la condition d’intégrabilité ω d ω = 0 et non dicritique, i.e. sur toute surface Z non intégrale de ω , on ne peut tracer, au voisinage de 0, qu’un nombre fini de germes de courbes analytiques ( Γ i , P i ) , intégrales de ω , avec P i Z Sing ω . Alors ω possède un germe d’hypersurface analytique intégrale.

Ideal CR submanifolds in non-flat complex space forms

Toru Sasahara (2014)

Czechoslovak Mathematical Journal

An explicit representation for ideal CR submanifolds of a complex hyperbolic space has been derived in T. Sasahara (2002). We simplify and reformulate the representation in terms of certain Kähler submanifolds. In addition, we investigate the almost contact metric structure of ideal CR submanifolds in a complex hyperbolic space. Moreover, we obtain a codimension reduction theorem for ideal CR submanifolds in a complex projective space.

Implicit function theorem for locally blow-analytic functions

Laurentiu Paunescu (2001)

Annales de l’institut Fourier

In this paper we prove the implicit function theorem for locally blow-analytic functions, and as an interesting application of using blow-analytic homeomorphisms, we describe a very easy way to resolve singularities of analytic curves.

Currently displaying 2181 – 2200 of 5581