The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
480
Let be a non-pluripolar set in . Let be a function holomorphic in a connected open neighborhood of . Let be a sequence of polynomials with such thatWe show that ifwhere is a set in such that the global extremal function in , then the maximal domain of existence of is one-sheeted, andfor every compact set . If, moreover, the sequence is bounded then .If is a closed set in then if and only if each series of homogeneous polynomials , for which some subsequence ...
Let be a hyperbolic surface and let be a Laplacian eigenfunction having eigenvalue with . Let be the set of nodal lines of . For a fixed analytic curve of finite length, we study the number of intersections between and in terms of . When is compact and a geodesic circle, or when has finite volume and is a closed horocycle, we prove that is “good” in the sense of [TZ]. As a result, we obtain that the number of intersections between and is . This bound is sharp.
The Siciak extremal function establishes an important link between polynomial approximation in several variables and pluripotential theory. This yields its numerous applications in complex and real analysis. Some of them can be found on a rich list drawn up by Klimek in his well-known monograph "Pluripotential Theory". The purpose of this paper is to supplement it by applications in constructive function theory.
The paper is concerned with the best constants in the Bernstein and Markov inequalities on a compact set . We give some basic properties of these constants and we prove that two extremal-like functions defined in terms of the Bernstein constants are plurisubharmonic and very close to the Siciak extremal function . Moreover, we show that one of these extremal-like functions is equal to if E is a nonpluripolar set with where
,
the supremum is taken over all polynomials P of N variables of total...
We use our disc formula for the Siciak-Zahariuta extremal function to characterize the polynomial hull of a connected compact subset of complex affine space in terms of analytic discs.
We obtain a complete list of simple framed curve singularities in ℂ² and ℂ³ up to the framed equivalence. We also find all the adjacencies between simple framed curves.
We study the simultaneous linearizability of –actions (and the corresponding -dimensional Lie algebras) defined by commuting singular vector fields in fixing the origin with nontrivial Jordan blocks in the linear parts. We prove the analytic convergence of the formal linearizing transformations under a certain invariant geometric condition for the spectrum of vector fields generating a Lie algebra. If the condition fails and if we consider the situation where small denominators occur, then...
Currently displaying 41 –
60 of
480