Automorphic Forms of Singular Weight are Singular Forms.
We show that the local automorphism group of a minimal real-analytic CR manifold is a finite dimensional Lie group if (and only if) is holomorphically nondegenerate by constructing a jet parametrization.
In questa Nota viene dato un nuovo metodo elementare per determinare il gruppo degli automorfismi del primo dominio classico. In una Nota successiva, con procedimenti del tutto analoghi verranno determinati i gruppi degli automorfismi del terzo e del quarto dominio classico.
In questa Nota vengono determinati, con un nuovo metodo elementare, i gruppi di automorfismi del terzo e del quarto dominio classico. Gli strumenti utilizzati sono quelli già introdotti nella precedente Nota, ove erano stati usati per determinare il gruppo degli automorfismi del primo dominio classico.
Dans cet article, j’étudie le groupe des automorphismes analytiques d’un domaine de Reinhardt borné d’un espace de Banach complexe à base. Je montre que, dans certains cas, ce groupe est un groupe de Lie banachique réel et je donne une classification complète des domaines de Reinhardt bornés homogènes. Pour certains espaces de Banach, je montre que les seuls automorphismes analytiques de la boule-unité ouverte sont linéaires.
Let D be a hyperbolic convex domain in a complex Banach space. Let the mapping F ∈ Hol(D,D) be bounded on each subset strictly inside D, and have a nonempty fixed point set ℱ in D. We consider several methods for constructing retractions onto ℱ under local assumptions of ergodic type. Furthermore, we study the asymptotic behavior of the Cesàro averages of one-parameter semigroups generated by holomorphic mappings.
We provide a structure theorem for Carnot-Carathéodory balls defined by a family of Lipschitz continuous vector fields. From this result a proof of Poincaré inequality follows.
It is shown that given a bounded strictly convex domain in with real analitic boundary and a point in , there exists a larger bounded strictly convex domain with real analitic boundary, close as wished to , such that is a ball for the Kobayashi distance of with center . The result is applied to prove that if is not biholomorphic to the ball then any automorphism of extends to an automorphism of .