Besov spaces and the boundedness of weighted Bergman projections over symmetric tube domains.
We asymptotically estimate from above the expected Betti numbers of random real hypersurfaces in smooth real projective manifolds. Our upper bounds grow as the square root of the degree of the hypersurfaces as the latter grows to infinity, with a coefficient involving the Kählerian volume of the real locus of the manifold as well as the expected determinant of random real symmetric matrices of given index. In particular, for large dimensions, these coefficients get exponentially small away from...
We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.
Let be a bounded domain in such that the boundary is topologically in with a regular point; let be a holomorphic map where is a neighborhood of . If is one-to-one when restricted to , then is biholomorphic.
Given a Lipschitz stratification 𝒳 that additionally satisfies condition (δ) of Bekka-Trotman (for instance any Lipschitz stratification of a subanalytic set), we show that for every stratum N of 𝒳 the distance function to N is locally bi-Lipschitz trivial along N. The trivialization is obtained by integration of a Lipschitz vector field.