The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 81 – 100 of 455

Showing per page

The complex Monge-Ampère equation for complex homogeneous functions in ℂⁿ

Rafał Czyż (2001)

Annales Polonici Mathematici

We prove some existence results for the complex Monge-Ampère equation ( d d c u ) = g d λ in ℂⁿ in a certain class of homogeneous functions in ℂⁿ, i.e. we show that for some nonnegative complex homogeneous functions g there exists a plurisubharmonic complex homogeneous solution u of the complex Monge-Ampère equation.

The degree at infinity of the gradient of a polynomial in two real variables

Maciej Sękalski (2005)

Annales Polonici Mathematici

Let f:ℝ² → ℝ be a polynomial mapping with a finite number of critical points. We express the degree at infinity of the gradient ∇f in terms of the real branches at infinity of the level curves {f(x,y) = λ} for some λ ∈ ℝ. The formula obtained is a counterpart at infinity of the local formula due to Arnold.

The diagonal mapping in mixed norm spaces

Guangbin Ren, Jihuai Shi (2004)

Studia Mathematica

For any holomorphic function F in the unit polydisc Uⁿ of ℂⁿ, we consider its restriction to the diagonal, i.e., the function in the unit disc U of ℂ defined by F(z) = F(z,...,z), and prove that the diagonal mapping maps the mixed norm space H p , q , α ( U ) of the polydisc onto the mixed norm space H p , q , | α | + ( p / q + 1 ) ( n - 1 ) ( U ) of the unit disc for any 0 < p < ∞ and 0 < q ≤ ∞.

The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms

Satoshi Koike, Laurentiu Paunescu (2009)

Annales de l’institut Fourier

Let A n be a set-germ at 0 n such that 0 A ¯ . We say that r S n - 1 is a direction of A at 0 n if there is a sequence of points { x i } A { 0 } tending to 0 n such that x i x i r as i . Let D ( A ) denote the set of all directions of A at 0 n .Let A , B n be subanalytic set-germs at 0 n such that 0 A ¯ B ¯ . We study the problem of whether the dimension of the common direction set, dim ( D ( A ) D ( B ) ) is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of A and B are also subanalytic. In particular if two subanalytic...

Currently displaying 81 – 100 of 455