The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We describe a series of Calabi-Yau manifolds which are cyclic coverings of a Fano 3-fold branched along a smooth divisor. For all the examples we compute the Euler characteristic and the Hodge numbers. All examples have small Picard number .
Nous définissons l’espace des germes d’arcs réels tracés sur un ensemble semi-algébrique
de , analogue réel de la théorie développée par Denef et Loeser concernant
l’espace des germes d’arcs tracés sur une variété algébrique complexe. Puis, reprenant
leur méthodes, nous prouvons la rationalité de la série de Poincaré associée à un
ensemble semi-algébrique.
We define the notion of CR equivalence for Levi-flat foliations and compare in a local setting these foliations to their linear parts. We study also the situation where the foliation has a first integral ; a condition is given so that this integral is the real part of a holomorphic function.
We consider the intersection multiplicity of analytic sets in the general situation. We prove that it is a regular separation exponent for complex analytic sets and so it estimates the Łojasiewicz exponent. We also give some geometric properties of proper projections of analytic sets.
Currently displaying 21 –
40 of
92