The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
218
We describe compact subsets K of ∂𝔻 and ℝ admitting holomorphic functions f with the domains of existence equal to ℂ∖K and such that the pluripolar hulls of their graphs are infinitely sheeted. The paper is motivated by a recent paper of Poletsky and Wiegerinck.
We consider the complex Plateau problem for strongly pseudoconvex contours in non-Kähler manifolds. We give a necessary and sufficient condition for the existence of solution in the class of manifolds carrying pluriclosed metric forms and propose a conjecture for the general case.
We prove a generalization of the well-known Hörmander theorem on continuation of holomorphic functions with growth conditions from complex planes in into the whole . We apply this result to construct special families of entire functions playing an important role in convolution equations, interpolation and extension of infinitely differentiable functions from closed sets. These families, in their turn, are used to study optimal or canonical, in a certain sense, weight sequences defining inductive...
Nous montrons comment un cup-produit non trivial entre deux blocs de Jordan pour une même valeur propre de la monodromie agissant sur la cohomologie de la fibre de Milnor d’un germe de fonction holomorphe provoque des pôles d’ordres élevés pour le prolongement méromorphe de . Pour la valeur propre 1 ceci donne en particulier le phénomène de “contribution sur-effective”.
Let D,G ⊂ ℂ be domains, let A ⊂ D, B ⊂ G be locally regular sets, and let X:= (D×B)∪(A×G). Assume that A is a Borel set. Let M be a proper analytic subset of an open neighborhood of X. Then there exists a pure 1-dimensional analytic subset M̂ of the envelope of holomorphy X̂ of X such that any function separately holomorphic on X∖M extends to a holomorphic function on X̂ ∖M̂. The result generalizes special cases which were studied in [Ökt 1998], [Ökt 1999], and [Sic 2000].
Let be a closed polar subset of a domain in . We give a complete
description of the pluripolar hull of the graph of a
holomorphic function defined on . To achieve this, we prove for
pluriharmonic measure certain semi-continuity properties and a localization principle.
Currently displaying 41 –
60 of
218