The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a compact Kähler manifold and be a -divisor with simple normal crossing support and coefficients between and . Assuming that is ample, we prove the existence and uniqueness of a negatively curved Kahler-Einstein metric on having mixed Poincaré and cone singularities according to the coefficients of . As an application we prove a vanishing theorem for certain holomorphic tensor fields attached to the pair .
Currently displaying 1 –
2 of
2