The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We establish plurisubharmonicity of envelopes of certain classical disc functionals on locally irreducible complex spaces, thereby generalizing the corresponding results for complex manifolds. We also find new formulae expressing the Siciak-Zaharyuta extremal function of an open set in a locally irreducible affine algebraic variety as the envelope of certain disc functionals, similarly to what has been done for open sets in ℂⁿ by Lempert and by Lárusson and Sigurdsson.
Given an irreducible algebraic curves in , let be the dimension of
the complex vector space of all holomorphic polynomials of degree at most restricted
to . Let be a nonpolar compact subset of , and for each choose
points in . Finally, let be
the -th Lebesgue constant of the array ; i.e., is
the operator norm of the Lagrange interpolation operator acting on , where
is the Lagrange interpolating polynomial for of degree at the points
. Using techniques of pluripotential...
Currently displaying 1 –
4 of
4