The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed , Filaseta and Lam have shown that the th degree Generalized Laguerre Polynomial is irreducible for all large enough . We use our criterion to show that, under these conditions, the Galois group of is either the alternating or symmetric group on letters, generalizing results of Schur for .
A new approach to the study of zeros of orthogonal polynomials with respect to an Hermitian and regular linear functional is presented. Some results concerning zeros of kernels are given.
Currently displaying 61 –
80 of
93