The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
1180
We introduce the analogue of Dunkl processes in the case of an affine root system of type . The construction of the affine Dunkl process is achieved by a skew-product decomposition by means of its radial part and a jump process on the affine Weyl group, where the radial part of the affine Dunkl process is given by a Gaussian process on the ultraspherical hypergroup . We prove that the affine Dunkl process is a càdlàg Markov process as well as a local martingale, study its jumps, and give a martingale...
The one-parameter family of polynomials is a subfamily of the two-parameter family of Jacobi polynomials. We prove that for each , the polynomial is irreducible over for all but finitely many . If is odd, then with the exception of a finite set of , the Galois group of is ; if is even, then the exceptional set is thin.
The maximal operator S⁎ for the spherical summation operator (or disc multiplier) associated with the Jacobi transform through the defining relation for a function f on ℝ is shown to be bounded from into for (4α + 4)/(2α + 3) < p ≤ 2. Moreover S⁎ is bounded from into . In particular converges almost everywhere towards f, for , whenever (4α + 4)/(2α + 3) < p ≤ 2.
Currently displaying 101 –
120 of
1180