The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 201

Showing per page

The Legendre Formula in Clifford Analysis

Laville, Guy, Ramadanoff, Ivan (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 30A05, 33E05, 30G30, 30G35, 33E20.Let R0,2m+1 be the Clifford algebra of the antieuclidean 2m+1 dimensional space. The elliptic Cliffordian functions may be generated by the z2m+2 function, analogous to the well-known Weierstrass z-function. The latter satisfies a Legendre equality. We prove a corresponding formula at the level of the monogenic function Dm z2m+2.

The new properties of the theta functions

Stefan Czekalski (2013)

Annales mathématiques Blaise Pascal

It is shown, that the function H ( x ) = k = - e - k 2 x satisfies the relation H ( x ) = n = 0 ( 2 π ) 2 n ( 2 n ) ! H ( n ) ( x ) .

Currently displaying 141 – 160 of 201