Displaying 2901 – 2920 of 9351

Showing per page

Fault tolerant control for uncertain time-delay systems based on sliding mode control

Jun Sheng Wu, Zhengxin Weng, Zuo Hua Tian, Song Jiao Shi (2008)

Kybernetika

Fault tolerant control for uncertain systems with time varying state-delay is studied in this paper. Based on sliding mode controller design, a fault tolerant control method is proposed. By means of the feasibility of some linear matrix inequalities (LMIs), delay dependent sufficient condition is derived for the existence of a linear sliding surface which guarantees quadratic stability of the reduced-order equivalent system restricted to the sliding surface. A reaching motion controller, which can...

Feeding Threshold for Predators Stabilizes Predator-Prey Systems

D. Bontje, B. W. Kooi, G. A.K. van Voorn, S.A.L.M Kooijman (2009)

Mathematical Modelling of Natural Phenomena

Since Rosenzweig showed the destabilisation of exploited ecosystems, the so called Paradox of enrichment, several mechanisms have been proposed to resolve this paradox. In this paper we will show that a feeding threshold in the functional response for predators feeding on a prey population stabilizes the system and that there exists a minimum threshold value above which the predator-prey system is unconditionally stable with respect to enrichment. Two models are analysed, the first being the classical...

Feuilletages singuliers de codimension un, groupoïde de Galois et intégrales premières

Guy Casale (2006)

Annales de l’institut Fourier

Dans cet article, nous étudions le groupoïde de Galois d’un germe de feuilletage holomorphe de codimension un. Nous associons à ce 𝒟 -groupoïde de Lie un invariant biméromorphe  : le rang transverse. Nous étudions en détails les relations entre cet invariant, l’existence de suites de Godbillon-Vey particulières et l’existence d’une intégrale première dans une extension fortement normale du corps différentiel des germes de fonctions méromorphes. Nous obtenons ainsi une généralisation d’un théorème...

Filippov Lemma for certain second order differential inclusions

Grzegorz Bartuzel, Andrzej Fryszkowski (2012)

Open Mathematics

In the paper we give an analogue of the Filippov Lemma for the second order differential inclusions with the initial conditions y(0) = 0, y′(0) = 0, where the matrix A ∈ ℝd×d and multifunction is Lipschitz continuous in y with a t-independent constant l. The main result is the following: Assume that F is measurable in t and integrably bounded. Let y 0 ∈ W 2,1 be an arbitrary function fulfilling the above initial conditions and such that where p 0 ∈ L 1[0, 1]. Then there exists a solution y ∈ W 2,1...

Filippov Lemma for matrix fourth order differential inclusions

Grzegorz Bartuzel, Andrzej Fryszkowski (2014)

Banach Center Publications

In the paper we give an analogue of the Filippov Lemma for the fourth order differential inclusions y = y”” - (A² + B²)y” + A²B²y ∈ F(t,y), (*) with the initial conditions y(0) = y’(0) = y”(0) = y”’(0) = 0, (**) where the matrices A , B d × d are commutative and the multifunction F : [ 0 , 1 ] × d c l ( d ) is Lipschitz continuous in y with a t-independent constant l < ||A||²||B||². Main theorem. Assume that F : [ 0 , 1 ] × d c l ( d ) i s m e a s u r a b l e i n t a n d i n t e g r a b l y b o u n d e d . L e t y₀ ∈ W4,1 b e a n a r b i t r a r y f u n c t i o n s a t i s f y i n g ( * * ) a n d s u c h t h a t ...

Currently displaying 2901 – 2920 of 9351