Numerical solution of initial and singularly perturbed two-point boundary value problems using adaptive spline function approximation.
We consider Sturm-Liouville differential operators on a finite interval with discontinuous potentials having one jump. As the main result we obtain a procedure of recovering the location of the discontinuity and the height of the jump. Using our result, we apply a generalized Rundell-Sacks algorithm of Rafler and Böckmann for a more effective reconstruction of the potential and present some numerical examples.
We briefly discuss an abstract approximation framework and a convergence theory of parameter estimation for a general class of nonautonomous nonlinear evolution equations. A detailed discussion of the above theory has been given earlier by the authors in another paper. The application of this theory together with numerical results indicating the feasibility of this general least squares approach are presented in the context of quasilinear reaction diffusion equations.
The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.
The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.
A three dimensional predator-prey-resource model is proposed and analyzed to study the dynamics of the system with resource-dependent yields of the organisms. Our analysis leads to different thresholds in terms of the model parameters acting as conditions under which the organisms associated with the system cannot thrive even in the absence of predation. Local stability of the system is obtained in the absence of one or more of the predators and in the presence of all the predators. Under appropriate...