Note on the theory of dispersions of the differential equation
The paper is devoted to the study of the properties of the Fučík spectrum. In the first part, we analyse the Fučík spectra of the problems with one second order ordinary differential equation with Dirichlet, Neumann and mixed boundary conditions and we present the explicit form of nontrivial solutions. Then, we discuss the problem with two second order differential equations with mixed boundary conditions. We show the relation between the Dirichlet boundary value problem and mixed boundary value...
In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value...
In this paper we study different algorithms for backward stochastic differential equations (BSDE in short) basing on random walk framework for 1-dimensional Brownian motion. Implicit and explicit schemes for both BSDE and reflected BSDE are introduced. Then we prove the convergence of different algorithms and present simulation results for different types of BSDEs.