Existence of solutions for a class of weighted -Laplacian system multipoint boundary value problems.
We study the existence of solutions of the system submitted to nonlinear coupled boundary conditions on where , with , are two increasing homeomorphisms such that , and , are two -Carathéodory functions. Using some new conditions and Schauder fixed point Theorem, we obtain solvability result.
In this paper we study the existence of classical solutions for a class of abstract neutral integro-differential equation with unbounded delay. A concrete application to partial neutral integro-differential equations is considered.
In this paper, we discuss the existence of solutions for a boundary value problem of fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions. Our results include the cases when the multivalued map involved in the problem is (i) convex valued, (ii) lower semicontinuous with nonempty closed and decomposable values and (iii) nonconvex valued. In case (i) we apply a nonlinear alternative of Leray-Schauder type, in the second case we combine the nonlinear alternative...
In this paper we examine nonlinear hyperbolic inclusions in Banach spaces. With the aid of a compactness condition involving the ball measure of noncompactness we prove two existence theorems. The first for problems with convex valued orientor fields and the second for problems with nonconvex valued ones.
We study the existence of mild solutions for a class of impulsive fractional partial neutral integro-differential inclusions with state-dependent delay. We assume that the undelayed part generates an α-resolvent operator and transform it into an integral equation. Sufficient conditions for the existence of solutions are derived by means of the fixed point theorem for discontinuous multi-valued operators due to Dhage and properties of the α-resolvent operator. An example is given to illustrate the...
In this paper we examine nonlinear integrodifferential inclusions defined in a separable Banach space. Using a compactness type hypothesis involving the ball measure of noncompactness, we establish two existence results. One involving convex-valued orientor fields and the other nonconvex valued ones.