Displaying 1121 – 1140 of 9351

Showing per page

Asymptotic Fourier and Laplace transformations for hyperfunctions

Michael Langenbruch (2011)

Studia Mathematica

We develop an elementary theory of Fourier and Laplace transformations for exponentially decreasing hyperfunctions. Since any hyperfunction can be extended to an exponentially decreasing hyperfunction, this provides simple notions of asymptotic Fourier and Laplace transformations for hyperfunctions, improving the existing models. This is used to prove criteria for the uniqueness and solvability of the abstract Cauchy problem in Fréchet spaces.

Asymptotic integration of differential equations with singular p -Laplacian

Milan Medveď, Eva Pekárková (2016)

Archivum Mathematicum

In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with p - Laplacian, where 1 < p < 2 . We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as t .

Asymptotic normality of eigenvalues of random ordinary differential operators

Martin Hála (1991)

Applications of Mathematics

Boundary value problems for ordinary differential equations with random coefficients are dealt with. The coefficients are assumed to be Gaussian vectorial stationary processes multiplied by intensity functions and converging to the white noise process. A theorem on the limit distribution of the random eigenvalues is presented together with applications in mechanics and dynamics.

Currently displaying 1121 – 1140 of 9351