Differential inequalities for one component of solution vector for systems of linear functional differential equations.
We present an abstract theory of the diffusion phenomenon for second order linear evolution equations in a Hilbert space. To derive the diffusion phenomenon, a new device developed in Ikehata-Matsuyama [5] is applied. Several applications to damped linear wave equations in unbounded domains are also given.
We present a generalization of topological transition matrices introduced in [6].
Sufficient conditions are given for the solvability of an impulsive Dirichlet boundary value problem to forced nonlinear differential equations involving the combination of viscous and dry frictions. Apart from the solvability, also the explicit estimates of solutions and their derivatives are obtained. As an application, an illustrative example is given, and the corresponding numerical solution is obtained by applying Matlab software.