Integral solutions for non-linear evolution equations on Banach space
The problem of integrating factor for ordinary differential equations is investigated. Conditions are given which guarantee that each solution of is also a solution of where and .
On considère le problème de déterminer les solutions d’une équation différentielle ordinaire, dite de Risch sur une courbe algébrique. En fait une généralisation assez évidente de la méthode de Risch suffit mais elle nous permet de généraliser son algorithme d’intégration à toute extension élémentairement transcendante d’une extension algébrique des fonctions rationnelles.
In this paper we prove existence theorems for integro - differential equations , t ∈ Iₐ = [0,a] ∩ T, a ∈ R₊, x(0) = x₀ where T denotes a time scale (nonempty closed subset of real numbers R), Iₐ is a time scale interval. Functions f,k are Carathéodory functions with values in a Banach space E and the integral is taken in the sense of Henstock-Kurzweil delta integral, which generalizes the Henstock-Kurzweil integral. Additionally, functions f and k satisfy some boundary conditions and conditions...