Computable error bounds with improved applicability conditions for collocation methods.
Using the cone theory and the lattice structure, we establish some methods of computation of the topological degree for the nonlinear operators which are not assumed to be cone mappings. As applications, existence results of nontrivial solutions for singular Sturm-Liouville problems are given. The nonlinearity in the equations can take negative values and may be unbounded from below.
We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore-Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal reduction of the system matrix pencil...
Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of . Singularity classes containing bifurcation points with , are considered.
We introduce and study conditional differential equations, a kind of random differential equations. We give necessary and sufficient conditions for the existence of a solution of such an equation. We apply our main result to a Malthus type model.
We show that the half-linear differential equation with -periodic positive functions is conditionally oscillatory, i.e., there exists a constant such that () with instead of is oscillatory for and nonoscillatory for .