Monotone positive solution of nonlinear third-order BVP with integral boundary conditions.
We first examine conditions implying monotonicity of the period function for potential systems with a center at 0 (in the whole period annulus). We also present a short comparative survey of the different criteria. We apply these results to quadratic Loud systems for various values of the parameters D and F. In the case of noncritical periods we propose an algorithm to test the monotonicity of the period function for . Our results may be viewed as a contribution to proving (or disproving) a conjecture...
We are interested in conditions under which the two-dimensional autonomous system ẋ = y, ẏ = -g(x) - f(x)y, has a local center with monotonic period function. When f and g are (non-odd) analytic functions, Christopher and Devlin [C-D] gave a simple necessary and sufficient condition for the period to be constant. We propose a simple proof of their result. Moreover, in the case when f and g are of class C³, the Liénard systems can have a monotonic period function...
In this paper we consider a parametric eigenvalue problem related to a vibrating string which is constructed out of two different materials. Using elementary analysis we show that the corresponding principal eigenvalue is increasing with respect to the parameter. Using a rearrangement technique we recapture a part of our main result, in case the difference between the densities of the two materials is sufficiently small. Finally, a simple numerical algorithm will be presented which will also provide...
We obtain monotonicity results concerning the oscillatory solutions of the differential equation . The obtained results generalize the results given by the first author in [1] (1976). We also give some results concerning a special case of the above differential equation.