The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
169 of
169
In this paper, we develop monotone iterative technique to obtain the extremal solutions of a second order periodic boundary value problem (PBVP) with impulsive effects. We present a maximum principle for ``impulsive functions'' and then we use it to develop the monotone iterative method. Finally, we consider the monotone iterates as orbits of a (discrete) dynamical system.
We obtain, by means of Banach's Fixed Point Theorem, convergence for the Picard iterations associated to a general nonlinear system of measure differential equations. We study the existence of left-continuous solutions defined on maximal intervals and we establish some properties of these maximal solutions.
On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.
In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
Currently displaying 161 –
169 of
169