Displaying 141 – 160 of 368

Showing per page

Existence results for nonlocal boundary value problems for fractional differential equations and inclusions with fractional integral boundary conditions

Sotiris K. Ntouyas (2013)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

This paper studies a new class of nonlocal boundary value problems of nonlinear differential equations and inclusions of fractional order with fractional integral boundary conditions. Some new existence results are obtained by using standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also discussed.

Existence results for q-difference inclusions with three-point boundary conditions involving different numbers of q

Sotiris K. Ntouyas, Thanin Sitthiwirattham, Jessada Tariboon (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we study a new class of three-point boundary value problems of nonlinear second-order q-difference inclusions. Our problems contain different numbers of q in derivatives and integrals. By using fixed point theorems, some new existence results are obtained in the cases when the right-hand side has convex as well as noncovex values.

Existence results for ϕ-Laplacian Dirichlet BVP of differential inclusions with application to control theory

Smaïl Djebali, Abdelghani Ouahab (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we study ϕ-Laplacian problems for differential inclusions with Dirichlet boundary conditions. We prove the existence of solutions under both convexity and nonconvexity conditions on the multi-valued right-hand side. The nonlinearity satisfies either a Nagumo-type growth condition or an integrably boundedness one. The proofs rely on the Bonhnenblust-Karlin fixed point theorem and the Bressan-Colombo selection theorem respectively. Two applications to a problem from control theory are...

Extremal selections of multifunctions generating a continuous flow

Alberto Bressan, Graziano Crasta (1994)

Annales Polonici Mathematici

Let F : [ 0 , T ] × n 2 n be a continuous multifunction with compact, not necessarily convex values. In this paper, we prove that, if F satisfies the following Lipschitz Selection Property: (LSP) For every t,x, every y ∈ c̅o̅F(t,x) and ε > 0, there exists a Lipschitz selection ϕ of c̅o̅F, defined on a neighborhood of (t,x), with |ϕ(t,x)-y| < ε, then there exists a measurable selection f of ext F such that, for every x₀, the Cauchy problem ẋ(t) = f(t,x(t)), x(0) = x₀, has a unique Carathéodory solution, depending...

Extremal solutions and relaxation for second order vector differential inclusions

Evgenios P. Avgerinos, Nikolaos S. Papageorgiou (1998)

Archivum Mathematicum

In this paper we consider periodic and Dirichlet problems for second order vector differential inclusions. First we show the existence of extremal solutions of the periodic problem (i.e. solutions moving through the extreme points of the multifunction). Then for the Dirichlet problem we show that the extremal solutions are dense in the C 1 ( T , R N ) -norm in the set of solutions of the “convex” problem (relaxation theorem).

Filippov Lemma for certain second order differential inclusions

Grzegorz Bartuzel, Andrzej Fryszkowski (2012)

Open Mathematics

In the paper we give an analogue of the Filippov Lemma for the second order differential inclusions with the initial conditions y(0) = 0, y′(0) = 0, where the matrix A ∈ ℝd×d and multifunction is Lipschitz continuous in y with a t-independent constant l. The main result is the following: Assume that F is measurable in t and integrably bounded. Let y 0 ∈ W 2,1 be an arbitrary function fulfilling the above initial conditions and such that where p 0 ∈ L 1[0, 1]. Then there exists a solution y ∈ W 2,1...

Filippov Lemma for matrix fourth order differential inclusions

Grzegorz Bartuzel, Andrzej Fryszkowski (2014)

Banach Center Publications

In the paper we give an analogue of the Filippov Lemma for the fourth order differential inclusions y = y”” - (A² + B²)y” + A²B²y ∈ F(t,y), (*) with the initial conditions y(0) = y’(0) = y”(0) = y”’(0) = 0, (**) where the matrices A , B d × d are commutative and the multifunction F : [ 0 , 1 ] × d c l ( d ) is Lipschitz continuous in y with a t-independent constant l < ||A||²||B||². Main theorem. Assume that F : [ 0 , 1 ] × d c l ( d ) i s m e a s u r a b l e i n t a n d i n t e g r a b l y b o u n d e d . L e t y₀ ∈ W4,1 b e a n a r b i t r a r y f u n c t i o n s a t i s f y i n g ( * * ) a n d s u c h t h a t ...

Currently displaying 141 – 160 of 368