The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 92

Showing per page

Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale

Christopher S. Goodrich (2013)

Commentationes Mathematicae Universitatis Carolinae

We consider the existence of at least one positive solution to the dynamic boundary value problem - y Δ Δ ( t ) = λ f ( t , y ( t ) ) , t [ 0 , T ] 𝕋 y ( 0 ) = τ 1 τ 2 F 1 ( s , y ( s ) ) Δ s y σ 2 ( T ) = τ 3 τ 4 F 2 ( s , y ( s ) ) Δ s , where 𝕋 is an arbitrary time scale with 0 < τ 1 < τ 2 < σ 2 ( T ) and 0 < τ 3 < τ 4 < σ 2 ( T ) satisfying τ 1 , τ 2 , τ 3 , τ 4 𝕋 , and where the boundary conditions at t = 0 and t = σ 2 ( T ) can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.

Existence of multiple positive solutions of n th -order m -point boundary value problems

Sihua Liang, Jihui Zhang (2010)

Mathematica Bohemica

The paper deals with the existence of multiple positive solutions for the boundary value problem ( ϕ ( p ( t ) u ( n - 1 ) ) ( t ) ) ' + a ( t ) f ( t , u ( t ) , u ' ( t ) , ... , u ( n - 2 ) ( t ) ) = 0 , 0 < t < 1 , u ( i ) ( 0 ) = 0 , i = 0 , 1 , ... , n - 3 , u ( n - 2 ) ( 0 ) = i = 1 m - 2 α i u ( n - 2 ) ( ξ i ) , u ( n - 1 ) ( 1 ) = 0 , where ϕ : is an increasing homeomorphism and a positive homomorphism with ϕ ( 0 ) = 0 . Using a fixed-point theorem for operators on a cone, we provide sufficient conditions for the existence of multiple positive solutions to the above boundary value problem.

Existence of one-signed solutions of nonlinear four-point boundary value problems

Ruyun Ma, Ruipeng Chen (2012)

Czechoslovak Mathematical Journal

In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems - u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) and u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) , where ε ( 0 , 1 / 2 ) , M ( 0 , ) is a constant and r > 0 is a parameter, g C ( [ 0 , 1 ] , ( 0 , + ) ) , f C ( , ) with s f ( s ) > 0 for s 0 . The proof of the main results is based upon bifurcation techniques.

Currently displaying 21 – 40 of 92