The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 23 of 23

Showing per page

Two separation criteria for second order ordinary or partial differential operators

Richard C. Brown, Don B. Hinton (1999)

Mathematica Bohemica

We generalize a well-known separation condition of Everitt and Giertz to a class of weighted symmetric partial differential operators defined on domains in n . Also, for symmetric second-order ordinary differential operators we show that lim sup t c ( p q ' ) ' / q 2 = θ < 2 where c is a singular point guarantees separation of - ( p y ' ) ' + q y on its minimal domain and extend this criterion to the partial differential setting. As a particular example it is shown that - Δ y + q y is separated on its minimal domain if q is superharmonic. For n = 1 the criterion...

Currently displaying 21 – 23 of 23

Previous Page 2