The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 61 – 80 of 280

Showing per page

Existence of periodic solutions for first-order totally nonlinear neutral differential equations with variable delay

Abdelouaheb Ardjouni, Ahcène Djoudi (2014)

Commentationes Mathematicae Universitatis Carolinae

We use a modification of Krasnoselskii’s fixed point theorem due to Burton (see [Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem, Nonlinear Stud. 9 (2002), 181–190], Theorem 3) to show that the totally nonlinear neutral differential equation with variable delay x ' ( t ) = - a ( t ) h ( x ( t ) ) + c ( t ) x ' ( t - g ( t ) ) Q ' ( x ( t - g ( t ) ) ) + G ( t , x ( t ) , x ( t - g ( t ) ) ) , has a periodic solution. We invert this equation to construct a fixed point mapping expressed as a sum of two mappings such that one is compact and the other is a large contraction. We show that the mapping fits...

Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale

Abdelouaheb Ardjouni, Ahcène Djoudi (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Let 𝕋 be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay x t = - a t h x σ t + c ( t ) x ˜ t - r t + G t , x t , x t - r t , t 𝕋 , where f is the -derivative on 𝕋 and f ˜ is the -derivative on ( i d - r ) ( 𝕋 ) . We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show...

Existence of positive solutions for a class of higher order neutral functional differential equations

Satoshi Tanaka (2001)

Czechoslovak Mathematical Journal

The higher order neutral functional differential equation d n d t n x ( t ) + h ( t ) x ( τ ( t ) ) + σ f t , x ( g ( t ) ) = 0 ( 1 ) is considered under the following conditions: n 2 , σ = ± 1 , τ ( t ) is strictly increasing in t [ t 0 , ) , τ ( t ) < t for t t 0 , lim t τ ( t ) = , lim t g ( t ) = , and f ( t , u ) is nonnegative on [ t 0 , ) × ( 0 , ) and nondecreasing in u ( 0 , ) . A necessary and sufficient condition is derived for the existence of certain positive solutions of (1).

Currently displaying 61 – 80 of 280