The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 2161 –
2180 of
17524
We derive an asymptotic formula of a new type for variational solutions of the Dirichlet problem for elliptic equations of arbitrary order. The only a priori assumption on the coefficients of the principal part of the equation is the smallness of the local oscillation near the point.
We consider solutions to the time-harmonic Maxwell's Equations
of a TE (transverse electric) nature. For such solutions we provide
a rigorous derivation of the leading order boundary perturbations
resulting from the presence of a finite number of interior inhomogeneities
of small diameter. We expect that these formulas will form the basis for
very effective computational identification algorithms, aimed at determining
information about the inhomogeneities from electromagnetic
boundary measurements.
...
In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with Laplacian, where . We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as .
We analyze the accuracy and well-posedness of generalized impedance
boundary value problems in the framework of scattering problems
from unbounded highly absorbing media. We restrict ourselves in this first work
to the scalar problem (E-mode for electromagnetic scattering problems). Compared to earlier works, the unboundedness of the rough absorbing layer introduces severe difficulties
in the analysis for the generalized impedance boundary conditions, since
classical compactness arguments are no...
Currently displaying 2161 –
2180 of
17524