The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 201 – 220 of 17524

Showing per page

A direct proof of the Caffarelli-Kohn-Nirenberg theorem

Jörg Wolf (2008)

Banach Center Publications

In the present paper we give a new proof of the Caffarelli-Kohn-Nirenberg theorem based on a direct approach. Given a pair (u,p) of suitable weak solutions to the Navier-Stokes equations in ℝ³ × ]0,∞[ the velocity field u satisfies the following property of partial regularity: The velocity u is Lipschitz continuous in a neighbourhood of a point (x₀,t₀) ∈ Ω × ]0,∞ [ if l i m s u p R 0 1 / R Q R ( x , t ) | c u r l u × u / | u | | ² d x d t ε * for a sufficiently small ε * > 0 .

A Dirichlet problem with asymptotically linear and changing sign nonlinearity.

Marcello Lucia, Paola Magrone, Huan-Song Zhou (2003)

Revista Matemática Complutense

This paper deals with the problem of finding positive solutions to the equation -∆[u] = g(x,u) on a bounded domain 'Omega' with Dirichlet boundary conditions. The function g can change sign and has asymptotically linear behaviour. The solutions are found using the Mountain Pass Theorem.

Currently displaying 201 – 220 of 17524