The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
220 of
1048
We obtain the fundamental solution kernel of dyadic diffusions in as a central limit of dyadic mollification of iterations of stable Markov kernels. The main tool is provided by the substitution of classical Fourier analysis by Haar wavelet analysis.
The boundary control problem for the dynamical Lame system (isotropic elasticity model) is considered. The continuity of the “input state” map in -norms is established. A structure of the reachable sets for arbitrary is studied. In general case, only the first component of the complete state may be controlled, an approximate controllability occurring in the subdomain filled with the shear (slow) waves. The controllability results are applied to the problem of the boundary data continuation....
The boundary control problem for the dynamical Lame system
(isotropic elasticity model) is considered. The continuity of
the “input → state" map in L2-norms is established. A structure of the
reachable sets for arbitrary T>0 is studied.
In general case, only the first component of the
complete state
may be controlled, an approximate controllability occurring in
the subdomain filled with the shear (slow) waves.
The controllability results are applied to the problem of the boundary
data continuation....
When a permanent magnet is released above a superconductor, it is levitated. This is due to the Meissner-effect, i.e. the repulsion of external magnetic fields within the superconductor. In experiments, an interesting behavior of the levitated magnet can be observed: it might start to oscillate with increasing amplitude and some magnets even reach a continuous rotation. In this paper we develop a mathematical model for this effect and identify by analytical methods as well with finite element simulations...
Hildebrand et al. (1999) proposed an adsorbate-induced phase transition model. For this model, Takei et al. (2005) found several stationary and evolutionary patterns by numerical simulations. Due to bistability of the system, there appears a phase separation phenomenon and an interface separating these phases. In this paper, we introduce the equation describing the motion of two interfaces in and discuss an application. Moreover, we prove the existence of the traveling front solution which approximates...
The Rayleigh-Bénard convection for a couple-stress fluid with a thermorheological effect in the presence of an applied magnetic field is studied using both linear and non-linear stability analysis. This problem discusses the three important mechanisms that control the onset of convection; namely, suspended particles, an applied magnetic field, and variable viscosity. It is found that the thermorheological parameter, the couple-stress parameter, and the Chandrasekhar number influence the onset of...
Epidermal wound healing is a complex process that repairs injured tissue. The complexity
of this process increases when bacteria are present in a wound; the bacteria interaction
determines whether infection sets in. Because of underlying physiological problems
infected wounds do not follow the normal healing pattern. In this paper we present a
mathematical model of the healing of both infected and uninfected wounds. At the core of
our model is an...
In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.
In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.
The Navier-Stokes system is studied on a family of domains with rough boundaries formed by oscillating riblets. Assuming the complete slip boundary conditions we identify the limit system, in particular, we show that the limit velocity field satisfies boundary conditions of a mixed type depending on the characteristic direction of the riblets.
Currently displaying 201 –
220 of
1048