Displaying 321 – 340 of 670

Showing per page

Positive solution for a quasilinear equation with critical growth in N

Lin Chen, Caisheng Chen, Zonghu Xiu (2016)

Annales Polonici Mathematici

We study the existence of positive solutions of the quasilinear problem ⎧ - Δ N u + V ( x ) | u | N - 2 u = f ( u , | u | N - 2 u ) , x N , ⎨ ⎩ u(x) > 0, x N , where Δ N u = d i v ( | u | N - 2 u ) is the N-Laplacian operator, V : N is a continuous potential, f : × N is a continuous function. The main result follows from an iterative method based on Mountain Pass techniques.

Positive solutions for concave-convex elliptic problems involving p ( x ) -Laplacian

Makkia Dammak, Abir Amor Ben Ali, Said Taarabti (2022)

Mathematica Bohemica

We study the existence and nonexistence of positive solutions of the nonlinear equation - Δ p ( x ) u = λ k ( x ) u q ± h ( x ) u r in Ω , u = 0 on Ω where Ω N , N 2 , is a regular bounded open domain in N and the p ( x ) -Laplacian Δ p ( x ) u : = div ( | u | p ( x ) - 2 u ) is introduced for a continuous function p ( x ) > 1 defined on Ω . The positive parameter λ induces the bifurcation phenomena. The study of the equation (Q) needs generalized Lebesgue and Sobolev spaces. In this paper, under suitable assumptions, we show that some variational methods still work. We use them to prove the existence of positive solutions...

Positive solutions for elliptic problems with critical nonlinearity and combined singularity

Jianqing Chen, Eugénio M. Rocha (2010)

Mathematica Bohemica

Consider a class of elliptic equation of the form - Δ u - λ | x | 2 u = u 2 * - 1 + μ u - q in Ω { 0 } with homogeneous Dirichlet boundary conditions, where 0 Ω N ( N 3 ), 0 < q < 1 , 0 < λ < ( N - 2 ) 2 / 4 and 2 * = 2 N / ( N - 2 ) . We use variational methods to prove that for suitable μ , the problem has at least two positive weak solutions.

Positive solutions for some quasilinear elliptic equations with natural growths

Lucio Boccardo (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is - div 1 + u r u + u m - 2 u u 2 = f in Ω u = 0 su Ω .

Positive solutions for sublinear elliptic equations

Bogdan Przeradzki, Robert Stańczy (2002)

Colloquium Mathematicae

The existence of a positive radial solution for a sublinear elliptic boundary value problem in an exterior domain is proved, by the use of a cone compression fixed point theorem. The existence of a nonradial, positive solution for the corresponding nonradial problem is obtained by the sub- and supersolution method, under an additional monotonicity assumption.

Positive solutions of critical quasilinear elliptic equations in R N

Paul A. Binding, Pavel Drábek, Yin Xi Huang (1999)

Mathematica Bohemica

We consider the existence of positive solutions of -pu=g(x)|u|p-2u+h(x)|u|q-2u+f(x)|u|p*-2u(1) in N , where λ , α , 1 < p < N , p * = N p / ( N - p ) , the critical Sobolev exponent, and 1 < q < p * , q p . Let λ 1 + > 0 be the principal eigenvalue of -pu=g(x)|u|p-2u    in ,        g(x)|u|p>0, (2) with u 1 + > 0 the associated eigenfunction. We prove that, if N f | u 1 + | p * < 0 , N h | u 1 + | q > 0 if 1 < q < p and N h | u 1 + | q < 0 if p < q < p * , then there exist λ * > λ 1 + and α * > 0 , such that for λ [ λ 1 + , λ * ) and α [ 0 , α * ) , (1) has at least one positive solution.

Currently displaying 321 – 340 of 670